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ABSTRACT 
One of the Federal Railroad Administration’s (FRA’s) 

current areas of research within its rail integrity research 
program includes investigating the defect growth behavior of 
modern rail steels. The modern rail steel research is a 
collaboration among several organizations:  Thornton-
Tomasetti, Arcelor-Mittal, Lehigh University, Harvard 
University, and the Volpe National Transportation Systems 
Center (Volpe). A companion paper to this one will describe the 
results of recently-completed mechanical testing, fracture 
toughness testing, fatigue crack growth rate calculations, and 
residual stress field characterizations performed in Phase I of 
this research.  

The behaviors measured in Phase I were examined under 
laboratory conditions. The effects of the service load 
environment, including thermal loads, track support conditions, 
wheel loading, internal defect position and geometry will also 
need to be investigated for their effects on defect growth. A 
candidate approach that can be used to investigate these effects 
is to employ the finite element (FE) method to simulate a variety 
of conditions. Several of the types of measurements made in 
Phase I, such as residual stress distribution, serve as inputs to 
an FE model. Additional inputs, such as the wheel load and 
support conditions on the rail would be defined based on typical 
values encountered in the railroad environment. Stress intensity 
factors can be calculated around each simulated crack front for 
a given combination of material inputs, load conditions, and 
defect geometry. These stress intensity factors can then be used 
to estimate the fatigue crack growth rate under the given 
conditions. 

The modeling approach described above can result in a 
model that contains several complicated behaviors, including 
wheel-rail contact, discrete rail supports, and modeling 
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techniques allowing the calculation of stress intensity factors. 
Further, several of these behaviors require specialized meshing 
techniques or analysis procedures. Thus, it is essential that the 
credibility of the model be established through a process of 
model validation.  

This paper lays out a framework for examining individual 
modeling techniques employed in the model, using a “building 
block” approach. Rather than trying to assess the entire model 
of a wheel on a discretely-supported rail containing an internal 
defect against a test measurement of the same conditions, the 
model is broken down into several key behaviors that must be 
verified. These distinct model behaviors, such as the method of 
discrete support, are then individually compared to known 
results to develop confidence in the simulation’s ability to 
produce physically-realistic results. In this way, confidence can 
be developed in the overall, complete model by developing 
confidence in several of the distinct modeling techniques that are 
employed in the overall model. The modeling techniques 
described in this paper include modeling the discretely-
supported rail under a wheel load, modeling the internal defect 
as a crack, and using a submodeling technique to combine areas 
of coarse and fine mesh in a computationally-efficient manner. 

Keywords: Rail steel, defect growth, modeling, simulation, FEA, 
analysis, verification, validation 

NOMENCLATURE 
BEF beam on elastic foundation 
FE  finite element 
KI  Mode-I stress intensity factor 
SIF  stress intensity factor 
V&V Verification and Validation 
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INTRODUCTION 
 One of FRA’s areas of research includes investigating the 
effects of modern rail steel manufacturing techniques on the 
growth rate of internal defects (such as detail fractures) that can 
develop within the rail. The modern rail steels characterization 
project is being conducted by a collaboration that includes 
Thornton-Tomasetti, Lehigh University, Harvard University, 
Arcelor Mittal, and Volpe. This paper is written in coordination 
with a companion paper describing the overall framework of the 
modern rail steels characterization project, as well as the results 
obtained during Phase I of this project [1]. In Phase II of this 
project, FE models are expected to be used to both assist in 
interpreting the results obtained in Phase I, and to extend the 
laboratory results obtained in Phase I to service conditions of 
actual rails in the field.  

Figure 1 contains a schematic illustration from the 
companion paper [1] illustrating the approach previously taken 
to characterizing defect growth in rails. The right-most column 
of processes on this figure, outlined with a dashed box, illustrates 
several of the anticipated uses of modeling in this research 
program. 

The “Fatigue Crack Growth Characterization” process is 
more fully-explained in the companion paper [1]. One of the 
desired outcomes of the modern rail steel characterization 
program is a comparison of the fatigue crack growth rates in 
service rails manufactured using different processes. The 
calculation of fatigue crack growth rates depend on input 
parameters related to material characteristics as well as loading 
environment. The empirical constants related to material 
behavior come from the Phase I measurements in this program. 
The parameters related to load environment, including stress 

intensity factors (K), must be determined from the anticipated 
loads that will be acting on the internal defect. 

As illustrated in the process labeled “Stress Intensity Factor 
Calculation” in this figure, the stress intensity factors (SIFs) 
developing around a particular defect geometry are determined 
from the residual stresses, the wheel loads, and the thermal 
stresses acting on the rail. The total stress state (i.e. combined 
wheel, thermal, and residual stresses) is used to determine the 
stress intensity factors for a given defect size and position within 
a rail. The results of a combined wheel-thermal-residual stress 
analysis are used to calculate stress intensity factors, which are 
then used as inputs to the “Fatigue Crack Growth 
Characterization” process.  

The “Fatigue Crack Growth Characterization” process has 
been applied using simplified geometries and assumptions in 
previous work [2]. To assess the importance of various 
parameters in the combined stress state, an FE model is one tool 
that can be used to estimate stress intensity factors under 
complicated load cases.  FE modeling can be used to 
complement the existing methodology for characterizing fatigue 
crack growth by analyzing the combined wheel-thermal-residual 
stress state in a given rail with an internal defect, providing SIF 
values that are used as inputs to the fatigue crack growth 
calculations. 

An additional use of FE models in the approach outlined in 
Figure 1 involves developing models to aid in interpreting 
residual stress results from Phase I. As described in the 
companion paper to this one, a key result from Phase I was the 
residual stress state in each type of rail (head-hardened, advanced 
head-hardened, and standard strength) prior to its entering 
service. The residual stress state within the rail can have a 

Figure 1. Schematic of Detail Fracture Growth Characterization (from [1]) 
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significant effect on crack growth rates, as a region of the rail 
may experience tensile stresses without the application of an 
external load. Any defect that extends into this region of residual 
tension will experience accelerated growth compared with a 
defect in an unstressed area, or an area with compressive stresses.  

However, since the measurement of residual stresses in both 
the companion paper and previously-published studies of 
residual stresses [1, 3] has required cutting the rails, the stress 
states measured in the cut rails have been altered from the stress 
states that existed in an uncut rail. Thus, the residual stress states 
obtained in the laboratory measurements will differ from the 
residual stress states that would have existed had a sample rail 
been left intact and placed directly into service. It is expected that 
FE models can be used to “back-calculate” the stress states in 
each of the rails that existed prior to the cuts being made. This 
paper will focus on the modeling techniques that can be used to 
simulate the load environment; further discussion of the 
modeling techniques used to reconstruct the residual stress state 
within the uncut rails is outside of its scope.  

APPLICATION OF PHASE I RESULTS TO SERVICE 
CONDITIONS 

One potential use of FE models as a part of a program 
investigating crack growth in modern rail steels is to extrapolate 
beyond laboratory conditions. This type of model would be used 
to examine the crack growth behavior under load cases that are 
more representative of the loads to be encountered by a rail 
installed in track, under “real world” load conditions.  

Figure 2 is a schematic illustration of the load environment 
that is anticipated to be simulated to extend the Phase I results to 
understand the rail crack growth rates under service conditions. 
The stresses in a given location within the rail at any point in 
time are the result of several loading sources. Thermal loads 
from ambient conditions will either result in tensile or 
compressive stresses in the rail, depending on the installation 
conditions. Service loads from passing railcars will place the rail 
cross-section containing a defect into a combined bending and 
shearing stress state. This behavior is made more complicated 
when the effects of multiple wheels acting on the same rail are 
considered.  

 
Figure 2. Schematic of Load Environment to be Simulated 

The stresses that develop in a particular cross-section of rail 
containing a defect will be influenced not only by the magnitudes 
and positions of the wheel loads, but will be influenced by the 
support conditions provided by the ties, ballast, and subgrade. As 
shown in Phase I of this program [1] and in previous works [3], 
the residual stress state within the rail is a spatially-varying 3-
dimensional stress state. This complicated load environment 
poses several challenges to being evaluated through testing. 
Thermal loading conditions will vary with the weather and can 
be challenging to control over the course of a long-duration 
outdoor experiment. While service loads can be somewhat 
controlled, in-service tracks would be expected to see a variety 
of wheel loads and spacing from different types of vehicles. 
While support conditions may be initially known and controlled, 
the support conditions can evolve with increasing traffic over the 
cross-section of interest. Even if an internal defect can be 
detected, its exact geometry and position within the rail may not 
be knowable without cutting the rail open to make the defect 
visible. Inherent variability within such a test setup poses many 
challenges to comparing analytical calculations, as conditions a 
short distance away (e.g. tie support conditions) may be different 
from those in the area of interest. 

In light of this inherent variability, a study may be designed 
to examine the relative influences of several of the loading 
parameters previously described. These difficult-to-control 
parameters of a study of the fatigue crack growth rate under 
service conditions make this problem an attractive one to be 
modeled rather than tested. FE modeling offers the ability to 
control the parameters of the load environment more tightly than 
could occur in a physical test, and to maintain conditions that 
would be undesirable to have change during a test.  

Modeling introduces its own set of challenges to evaluating 
the defect growth-rate problem. The complex interactions 
between environment, vehicle, track, and a rail with an internal 
defect create many opportunities for a modeling technique or 
assumption to produce a misleading result. The assumptions and 
simplifications made in setting up such a model may be 
necessary or convenient, but it is critically important that those 
decisions are first examined to determine that they are 
reasonable.  

1.1 Modeling Framework 
The process of generating evidence and establishing 

credibility in computer models of physical systems is referred to 
as verification and validation (V&V) [4]. The complete model of 
a railroad rail with an internal defect subjected to differing load 
environments does not have corresponding experimental data to 
use in comparisons to help develop confidence in the model 
through a process of model validation. To develop confidence in 
this complete model, a series of smaller models have been 
developed.  Each smaller “component” model is meant to 
examine one behavior for which experimental or closed-form 
solutions are available. Two such modeling components are 
described in this paper. These models were executed in the 
Abaqus/Standard FE software [5]. These component models use 
the same modeling techniques as are planned to be combined into 
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the complete model.  If each component model, using the same 
modeling techniques as the complete model, provides reasonable 
agreement with an independent solution, there is increased 
confidence in the complete model incorporating multiple such 
components. 

The advanced modeling techniques expected to be used in a 
complete model include either a continuous or discrete 
foundation to represent the support provided by the railroad ties 
and ballast, a simulated flaw within the rail used to calculate 
stress intensity factors (SIFs) that can then be used to calculate 
crack growth rates, and submodeling techniques to reduce the 
runtime necessary to simulate a variety of defect geometries in a 
reasonable timeframe. This paper presents results of the 
investigations performed on each of these modeling components 
to develop confidence in these individual behaviors. Additional 
V&V may be necessary and appropriate to understand the 
influence of further or additional components beyond those 
presented here.    

MODELING OF RAIL SUPPORT CONDITIONS 
The complete model is intended to capture the stresses and 

deflections of a rail under one or more wheel loads.  The rail 
must be supported in a way that is representative of the way in 
which an actual rail would be supported.  Rail support is 
provided by the tieplates and crossties, which are themselves 
supported by a layer of ballast.  As a simplification of the support 
provided by the ballast and subgrade, previous modeling efforts 
have modeled the ties as a series of discrete springs 
[6][7][8][9][10]. Previously, bending moments were estimated 
for discretely versus continuously-supported rail and reported in 
a technical paper [11]. The work described in this paper also 
featured discrete springs to represent the rail support provided by 
the ties, and included discussion of the effect of tie spacing on 
the validity of the assumption of a continuous, elastic foundation 
beneath the rail. For sufficiently-close ties, the elastic spring 
approach provided reasonable agreement with classical beam on 
elastic foundation (BEF) [12] calculations, but introduces 
complexity into an already complex model.   

A simplified approach to supporting the rail in the FE model 
is to assume the discrete ties are sufficiently close-spaced and 
providing sufficiently-uniform support to be approximated as a 
continuous foundation.  This is the same approach as is used in 
the BEF closed-form calculations, but implemented in the FE 
model.  The Abaqus FE software allows the user to define a 
linear “elastic foundation” with a user-defined stiffness per area.  
This modeling approach was investigated as a part of the overall 
model verification efforts.  The stress and deflection responses 
from the FE model were compared to the stresses and deflections 
calculated using BEF theory.   

To illustrate the comparison, an example problem was 
evaluated using typical values for rail cross-section, foundation 
modulus, and wheel load. To simplify the calculations, only a 
single rigid, cylindrical wheel was modeled in this component-
level examination. A static load corresponding to one-eighth the 
weight of a 286,000 pound railcar was applied through this 

wheel. The parameters common to both the FE models and the 
BEF calculations are shown in Table 1. 

Table 1.  Parameters Used in BEF and FE Modeling Verification 

Parameter Value 
Rail Section 136RE 

Moment of Inertia 94.2 in4 
Foundation Modulus 100 – 10,000 psi 

Wheel Load 35,750 pounds 
Esteel 3 x 107 psi 

The same model used to investigate the rail support 
conditions can also be used to investigate the influence of length 
of rail modeled against the global behavior of the model. In 
general, this preliminary review verified the expected result 
obtained from BEF theory, that a softer foundation will require a 
longer length of rail to be included in the model for the BEF-like 
behaviors to be captured. From BEF theory [12], the wavelength 
of the deflection line of the beam (in this case, the rail) is a 
function of the foundation stiffness, the modulus of elasticity of 
the rail’s material, and the area moment of inertia of the rail for 
bending about a horizontal axis, as described by Equation 1: 

 

(1) 
From BEF theory, the deflection of the rail from a single 

wheel load will equal zero at periodic distances from the point of 
wheel load application. These zero-crossings occur at distances 
from the point of wheel load of:  

dzero
n π⋅

4 λ⋅       (2) 
where n=3, 7, 11… To approximate a finite-length rail as a 
continuous rail using BEF theory, a rail length sufficient to 
include the second zero-crossing from the point of wheel load 
application should be used as a minimum length. Using the 
values given in Table 1 for stiffness, E, and moment of inertia 
with Equation 1 and an n-value of 7 in Equation 2, the resulting 
minimum-lengths of rail are shown in Figure 3 for several 
foundation moduli examined. 

 
Figure 3. Minimum Length of Model to Approximate Infinite Beam on 

Elastic Foundation for Various Foundation Moduli 

 λ
4 k

4 E⋅ Iyy⋅



 

 5  
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for 

public release; distribution is unlimited. 

Figure 4 illustrates the rail deflection versus distance along 
the rail for varied foundation stiffnesses simulated using the FE 
model. In this figure, the wheel load acts on the rail at a 
horizontal position of zero inches. For the 100 psi, 1,000 psi, 
3,000 psi, and 10,000 psi foundation models, the rail extended 
beyond the position of the wheel by 250 inches in each direction. 
The values of extremely soft and extremely strong foundation 
supports may not represent actual service conditions. However, 
these values were included in the examination as extreme cases, 
to illustrate the need to model a sufficiently-long section of rail 
over the likely range of conditions to be encountered. On the 
basis of the results from Table 2, this length of rail would be 
sufficient to capture the second zero-crossing for foundation 
moduli of 3,000 psi and 10,000 psi, but would not be sufficiently-
long for the 1,000 and 100 psi foundation moduli. 

 
Figure 4. Vertical Deflection along Bottom of Rail for Different 

Foundation Stiffnesses, Different Lengths of Rail 

The deflection of a 250-inch long rail on either a 1,000 or 
100 psi foundation did not return to zero as the distance from the 
wheel increased. While the 1,000 psi results resemble the 3,000 
and 10,000 psi results, as the deflection is approaching zero but 
not reaching it, the 100 psi results are obviously behaving in a 
very different manner from the other results. This indicated that 
for this extremely soft foundation, the rail was not behaving as a 
continuous beam. Further, the 1,000 psi and 100 psi results 
underscore the need to perform verification checks on the results 
for reasonable agreement with simplified solutions. In the 
absence of the results from Figure 3, the 100 psi foundation 
results would still draw attention to themselves owing to the 
significant difference in their behavior compared to all the other 
results. However, the 1,000 psi results bear a much closer 
resemblance to the results for which 250 inches of rail is a 
sufficient length. 

A foundation stiffness of 3,000 psi was carried forward into 
subsequent calculations, as this value had been used in previous 
studies of FE models of rail [6, 10]. A rail length of 250 inches 
was also carried forward, as a longer rail would require 
additional simulation time without increasing the fidelity of the 
model in the region of interest for this foundation stiffness.  

The next component-level analysis investigated the use of 
the “elastic foundation” keyword to model continuous versus 
discrete support beneath a rail. Two different FE models were 

created using similar modeling methods.  In Model 1, a 
continuous elastic foundation was uniformly applied to the entire 
bottom surface of the rail. In Model 2, an elastic foundation was 
applied to discrete locations, simulating the support provided by 
regularly-spaced crossties. Rather than applying a uniform 
elastic foundation to the entire rail base, an effective stiffness 
was calculated based on the proportion of the length of a rail in 
contact with crossties over a fixed length of track.  This effective 
foundation was then only enabled under the rail at the locations 
of cross ties, leaving an unsupported span of rail between areas 
of foundation.  These two approaches are shown schematically 
in Figure 5, where a wheel is shown on top of Model 1 in the top 
figure and a wheel is shown on top of Model 2 (loading the rail 
between discrete foundations) in the bottom of this figure. 

 
Figure 5.  Wheel on Continuous Elastic Foundation (top) and Discrete 

Elastic Foundation (bottom) 

Two of the key results compared between the FE models 
using discrete and continuous support and the BEF calculations 
are the axial stresses in the rail base and the vertical deflection 
of the rail. Figure 6 contains a plot of the axial stress in the 
bottom of the rail for the two FE results and the BEF 
calculations. The discrete and continuous FE results nearly 
overlay one another, while there is a difference between the FE 
results and the BEF calculations in the vicinity of the point of 
load application. For the discrete support case, the load is applied 
to an unsupported area between two areas of support. 

 
Figure 6. Axial Stresses in Bottom of Rail versus Distance from Wheel 

Load for FE and BEF Calculations 
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Additionally, the vertical deflection of the rail as a function 
of distance from the load was compared both between FE 
modeling approaches and against the BEF calculations. These 
results exhibited a similar qualitative level of agreement as the 
stress results, with a difference in the vicinity of the load 
application. The peak stresses in the bottom of the rail and the 
maximum downward deflection results are summarized for the 
FE analyses and the BEF calculations in Table 2. This table 
indicates that for all results compared, the FE results exhibit a 
difference of less than 5% of the BEF results. 

Table 2. Summary of Results, FE and BEF Calculations 

 

For well-supported track, the discrete and continuous 
supports do not show much of a difference compared to the BEF 
calculations. However, for other track conditions (e.g. missing 
ties, irregularly-spaced ties, varying ballast conditions), the 
discrete-support model offers increased flexibility to represent 
spatial variations in track support conditions. While it is more 
complicated to set up a model to use a discrete support condition, 
this approach offers flexibility to vary the stiffness of each tie 
and to vary the spacing between ties.  

CRACK MODELING 
In the complete model, the internal defect may be simulated 

as a circular or elliptical crack in the head of the rail.  As a 
verification of the methods chosen to model the defect and 
calculate SIFs, a closed-form solution for calculating the stress 
intensity factor KI for a circular crack within a circular bar will 
be compared with a simulation of the same case [13].  
Techniques studied using this particular component verification 
model included the use of symmetry planes at the crack location, 
the mesh size necessary to model the crack, and element types 
used to model the crack.  This verification model used the same 
contour integral calculation techniques to calculate the SIFs as 
had been previously-employed to examine SIFs associated with 
a rail base crack using FEA [14]. 

Figure 7 contains a schematic illustration of the verification 
case chosen. This case features a round bar with a circular 
internal defect (crack) subject to uniform tension. Because the 
crack is coaxial with the circular bar, this problem is 
axisymmetric. Thus, the SIF is the same around the entire 
circumference of the circular defect. 

 
Figure 7. Schematic of Round Bar with Circular Internal Crack under 

Uniform Tension 

The KI SIF was calculated using the closed-form approach 
from Reference 13 for several different combinations of bar 
diameter and crack diameter.  For all models, a uniform pressure 
load totaling 1,000 pounds of tension was applied to the ends of 
the bar.  The bar was modeled as an elastic steel with a Young’s 
Modulus of 3 x 107

 psi.  The bar was modeled as either a 4- or 5-
inch long bar of circular cross-section.  The length of bar beyond 
the crack is important to ensure that a uniform stress field can 
develop in the cross-section far from the crack.   

Developing an axisymmetric model would be an appropriate 
simplification for the round bar with a circular crack. However, 
the purpose for performing this component-level examination is 
to develop confidence in modeling techniques that will be 
applied to the complete model of an internal defect within a rail 
in a service environment. Because a detail fracture within the 
head of a rail is not an axisymmetric situation, it would not be 
appropriate to employ an axisymmetric model at the component 
verification level. However, depending on the position of the 
detail fracture within the rail and the relative position of the 
wheels within the complete model, one or more planes of 
symmetry may exist within that model. Thus, while it is not 
appropriate to perform component-level simulations on the 
round bar model using axisymmetric conditions, it is appropriate 
to consider using different combinations of planar symmetry 
simplifications at the component level. 

This approach can examine whether the selected 
implementation of KI calculations within the Abaqus solver 
provides consistent results when symmetry conditions are 
employed to reduce the model size. This is an important check 
to include, as this modeling approach involves a path integral 
around the crack front. If a symmetry plane passes through the 
crack front itself, it is important to verify that the calculations are 
taking this symmetry into account. 

The chosen method of modeling a crack within a solid body 
uses a user-defined number of contours surrounding the crack tip 
to calculate SIFs. Because the contour method is, in theory, path 
independent, evaluating the SIFs using multiple paths around the 
crack front can provide an indication of mesh convergence. That 
is, if results using n different contour around the same crack are 
found to give SIFs that are very close to one another, this 
indicates the mesh is converging and the SIF calculations really 
are mesh independent. However, if there is disagreement among 
the contours, it is an indication that further mesh refinement may 

MAXIMUM 
DOWNWARD 
DEFLECTION

MAX 
STRESS 

(BOTTOM)

MIN 
STRESS 

(BOTTOM)

DEFLECTION 
DIFFERENCE

MAX STRESS 
(BOTTOM) 

DIFFERENCE

MIN STRESS 
(BOTTOM) 

DIFFERENCE

in KSI KSI % % %
BEF 

CALCULATIONS
BEF -0.135 14.1 -2.9 -

PROFILE 1 -0.139 14.7 -2.8 2.7% 4.4% -4.3%

DISCRETELY 
SUPPORTED FEA

PROFILE 1 -0.139 14.7 -2.8 3.0% 4.5% -3.5%

CONTINUOUSLY 
SUPPORTED FEA
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be necessary.  
Figure 8 shows an exemplar FE mesh from a model using 

three planes of symmetry to reduce the model to one-eighth its 
complete size. All FE models used in this component-level 
investigation were meshed using similar, but not identical, 
techniques.  In all cases, the model used 20-node (quadratic) 
hexahedral (brick) elements.  For the elements adjacent to the 
crack tip, the mid-side node was moved to the quarter-point of 
the element’s face to provide a more accurate solution. From left-
to-right, this figure shows the full domain of the model, a 
zoomed-in view of the mesh around the circular crack, and a 
further zoomed-in view of the mesh around the crack tip. The 
roughly concentric arrangement of elements surrounding the 
crack tip is deliberately chosen to facilitate the contour method 
of calculating KI.   

 
Figure 8. Progressively-focused Views of Crack Tip Mesh, One-eighth 

Symmetry FE Model 

Seven FE models of the round bar problem were run. Each 
model featured a unique combination of bar radius, crack radius, 
symmetry conditions, axial length, and element type. As a result 
of these variations, the total number of elements also varied from 
model to model. Both the closed-form solution and the FE 
models featured a coaxial circular defect within a round bar, with 
the exception of one simulation that featured a circular defect 
offset from the center of the round bar. This case was included in 
the component-level verification to examine the effects of 
including an asymmetric case, as the complete model is expected 
to be used to evaluate load cases where the rail defect is loaded 
asymmetrically. The seven FE models are summarized in Table 
3. 

Due to space limitations, a full discussion of the results of 
each of the seven bar models is not possible within this paper. 
Several key results are instead presented below, with an 
accompanying discussion describing the lessons that were 
learned from this component-level examination. Table 4 contains 
a summary of results for each closed-form solution and FE 

models Bar-1 through Bar-6. Results from model Bar-7 are not 
included in this comparison, as this model featured an offset 
defect in the bar, for which there is not a corresponding closed-
form solution. Three different closed-form solution results are 
presented, as each combination of bar radius and crack radius 
results in a different value for KI. Since each FE model exhibited 
a variation in KI values around the circumference of the circular 
crack, results are presented as the minimum and maximum 
values obtained from each model. 

Table 4. Summary of KI Values and Differences between FE Models 
and Closed-form Solutions 

Analysis 

KI Difference from Closed-form 

PSI-IN1/2 % 

Min. Max. Min. Max. 

Closed-form 5”/1” 14.4 14.4 - - 

Bar-1 14.5 14.7 0.5% 2.1% 

Bar-2 14.3 14.6 -1.1% 1.0% 

Bar-3 18.4 18.4 27.3% 27.7% 

Bar-4 14.0 14.3 -2.7% -1.3% 

Closed-form 4”/0.5” 15.9 15.9 - - 

Bar-5 15.3 16.0 -3.6% 0.4% 

Closed-form 4”/1” 22.7 22.7 - - 

Bar-6 21.5 22.0 -5.0% -2.8% 

From these results, one apparent standout result is the 
considerably higher differences between the closed-form 
solution and model Bar-3. One variable examined at the 
component level was the use of fully-integrated (C3D20) or 
reduced-integration (C3D20R) elements in the Abaqus software 
to mesh the region around the crack. Models Bar-3 and Bar-4 
were identical, except for the element formulation; Bar-3 used 
reduced-integration elements, and Bar-4 used fully-integrated 
elements. In model Bar-3, the reduced-integration results 
consistently over-predict the KI value by approximately 27%. In 
model Bar-4, the fully-integrated element results are much closer 
to the closed-form solution. It is clear that the fully-integrated 

Table 3. Summary of Round Bar with Round Crack Verification Models 

Model Bar 
Radius 

Crack 
Radius Crack Location Symmetry Used Axial Length 

(Overall) 
Axial Length 
(Crack Zone) 

Element 
Type 

Number of 
Elements 

- in. in. - Width Height Length in. in. - - 

Bar-1 5 1 Center - - Half 4 0.2 C3D20 84,580 

Bar-2 5 1 Center Half Half - 4 0.2 C3D20 47,256 

Bar-3 5 1 Center Half Half Half 5 0.2 C3D20R 43,980 

Bar-4 5 1 Center Half Half Half 5 0.2 C3D20 43,980 

Bar-5 4 0.5 Center Half Half Half 5 0.1 C3D20 45,906 

Bar-6 4 1 Center Half Half Half 5 0.2 C3D20 51,738 

Bar-7 4 1 1" Lateral Offset - Half Half 4 0.2 C3D20 48,224 
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elements provide a superior level of agreement compared to the 
reduced-integration elements for the same level of mesh 
refinement. Thus, fully-integrated quadratic (C3D20) elements 
will be carried forward for modeling cracks in the complete 
model. 

SUBMODELING TECHNIQUE 
Based on the component-level study performed on modeling 

of the rail support conditions, it is apparent that for typical 
foundation stiffnesses of 1,000 psi or greater, the modeling 
domain must extend at least 250 inches beyond the position of 
the wheel to correctly capture the behavior of the rail beneath the 
wheel. If multiple wheels are included within the model the 
modeling domain would extend at least 250 inches beyond the 
farthest wheel from the rail cross-section of interest to ensure 
that its deflection field was correctly captured by the model. 
While symmetric boundary conditions can provide some 
computational efficiency, the modeling domain would still be 
quite large compared to the diameter of a single wheel. 

The crack modeling study has shown that the contour 
approach to calculating SIFs requires a highly-refined mesh of 
higher-order (quadratic) fully-integrated elements. This refined 
mesh is highly-localized around a defect that measures only a 
few inches in each direction. These elements are necessary to 
calculate the KI values while minimizing the error from the 
closed-form solution, but increase computational time due to the 
additional mid-side nodes and integration points within the 
elements. 

The combination of a large modeling domain necessary to 
capture the global behavior with a highly-refined, higher-order 
mesh necessary to capture the localized stresses around the 
internal defect has the potential to be computationally 
demanding. While the mesh can be graded to use coarser 
elements farther away from the cross-section containing the 
defect, the elements are limited in how extreme an aspect ratio 
they can have and still produce credible results. 

A potentially more efficient approach to addressing the 
competing mesh requirements is to use a submodeling technique. 
With this approach, a global model of the complete rail, without 
a defect, is used to simulate the desired loading scenario.  
Because the crack is a local effect, the global reaction forces, far-
field stresses, and global deflections should experience an 
insignificant influence from the presence of a defect within the 
rail. A small model of rail section incorporating the desired 
defect, referred to as a submodel, is also created.  This model 
would feature the refined, higher-order mesh necessary to 
capture the stress intensity factors surrounding the internal crack.  
The stresses and deflections obtained from the global model are 
then projected onto the limits of the submodel. If the submodel 
is sufficiently-large to place the defect away from its boundaries, 
the far-field stresses and deflections from the global model are 
unaffected by the presence of the defect.  Ideally, this approach 
to modeling produces the same result as would have been 
obtained by running a highly-detailed global model with an 
internal defect, but does so in less time.   

One of the fundamental assumptions that must be true for 
this approach to be effective is that the presence of the defect 
within the submodel has only local effects, as the global model 
is run without any sort of defect. Additionally, while in theory 
the global model and the submodel can use elements of a 
different size and different order, care must be taken to ensure 
that the projection of the results from the global model into the 
submodel are reasonable and are capturing the behavior(s) of 
interest. While a fine mesh of higher-order elements is required 
in the region surrounding the crack, submodeling can 
theoretically allow a coarse mesh of simple elements to model 
the global rail. However, it is important to verify that the 
submodeling constraints can effectively map the global model 
displacements or stresses onto the boundaries of the submodel 
when the two models have different element sizes and orders. 

Investigation of the submodeling approach was done using 
a simplified model of a rail segment on a continuous elastic 
foundation with an equivalent modulus of 3,000 psi, subjected to 
a single wheel load.  The global model consisted of an 800-inch 
segment of rail with a coarse mesh.  Other model parameters 
were the same as previously reported in Table 1. The submodel 
consisted of a 4-inch length of rail directly under the wheel.  The 
submodel was meshed using a much finer mesh than the global 
model.  The geometry (left) and meshes (right) of both the global 
model (top) and submodel (bottom) are shown in Figure 11. 
Because of symmetry, both the global model and the submodel 
used quarter-symmetric representations of the rail.   

 
Figure 9. Model Overview (left) and Cross-section Mesh (right) for 

Global Model (top) and Submodel (bottom) 

For both the global model and the submodel, the same 
meshes were used in the various simulations performed in this 
component-level verification. However, different element 
formulations were used in the models to evaluate how well the 
submodeling technique worked for different combinations of 
elements in the global model and submodel.  The Abaqus 
software requires the user to define a position tolerance between 
the nodes involved in the submodel constraint on the submodel 
and on the global model to account for differences in mesh 
density between the two models.  In general, a value between 0.1 
inches and 0.25 inches was used. 

As the ultimate goal of this modeling effort is to develop a 
model of a rail which features an internal defect under service 
conditions, it was important to consider the results of the crack 
modeling previously discussed (see Crack Modeling).  Because 
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the crack modeling approach used in this effort required higher-
order elements in the crack region, the submodel should only be 
meshed using higher-order elements.  While the crack modeling 
verification study demonstrated that fully-integrated higher-
order elements produced better agreement with published 
solutions for KI, fully-integrated elements are only needed in the 
mesh immediately surrounding the crack.  Reduced integration 
higher-order elements may be used in the same mesh as fully-
integrated higher-order elements without the need to write 
constraint equations. Additionally, first-order reduced (C3D8R) 
and full (C3D8) integration elements were investigated in the 
global model.   

When evaluating each combination of global model and 
submodel meshes, two different comparisons have been made. 
First, the stresses and displacements of the global model are 
compared to the stresses and displacements calculated using 
BEF theory. This comparison provides a relative indication of 
the performance of different element orders and formulations for 
the global model. Second, the stresses and deflections along the 
length of the submodel are compared with the stresses and 
deflections in the corresponding locations in the global model. 
Because this exercise is being conducted without including a 
defect within the submodel, the stresses and deflections in the 
submodel should be the same as those in the corresponding 
locations within the global model. Any discrepancies between 
the two results would indicate that the submodeling constraint is 
not functioning as intended for that combination of global and 
submodel. The stress results from the bottom of the rail at a 
distance 2” down the rail from the wheel (the end of the 
submodeled domain) are presented in Table 5 for the BEF 
calculations, and each combination of global model and 
submodel investigated. 

Table 5. Summary of Global and Submodeling Results 

Analysis 

Element 
Type 

Stress 2" 
from 

Wheel 
(Bottom) 

Difference 
from BEF 

Difference 
from 

Global 
Model 

- KSI % % 

  BEF - 12.8 - - 

C
O

N
T

IN
U

O
U

SL
Y

-S
U

PP
O

R
TE

D
 F

E
A

 

GLOBAL C3D8R 12.3 -4.2% - 

SUBMODEL C3D20R 13.6 6.4% 11.1% 

GLOBAL C3D8 12.9 1.1% - 

SUBMODEL C3D20R 13.4 4.5% 3.4% 

GLOBAL C3D20R 13.9 8.4% - 

SUBMODEL C3D20R 13.9 8.5% 0.1% 

GLOBAL C3D20 13.9 8.8% - 

SUBMODEL C3D20 14.0 9.0% 0.2% 

GLOBAL C3D8R/
C3D20R 13.9 8.5% - 

SUBMODEL C3D20R 14.0 9.1% 0.6% 

The results shown in Table 5 appear to indicate a tradeoff 
between the ability of the global model to agree with the BEF 
stress results and the ability of the submodel to agree with the 
global model at the same location. The two highlighted cells 
indicate the smallest differences between the global model and 
the BEF result or the smallest difference between the global 
model and the submodel. For the result with the smallest 
difference between the global result and the BEF result, the 
difference between the submodel and global model is the second-
largest of all seen. For the case with the smallest difference 
between the submodel and global model, each of those models 
exhibits a fairly large difference when compared with the BEF 
result. 

Further examination may be appropriate to investigate 
additional combinations of global and submodeling meshes, or 
whether a global reduction in mesh size can improve the level of 
agreement for both behaviors. A desired outcome would be a 
combination of local and global meshes for which the differences 
between the FE models and the BEF calculations are small, and 
simultaneously the difference between the global model and 
submodel at the limits of the submodel domain is also small.  

CONCLUDING REMARKS 
One of the areas of research currently pursued by the FRA 

is investigating the effects of modern rail steel manufacturing 
techniques on the growth rate of internal defects that can develop 
within the rail. Phase I of this project included laboratory 
characterizations on the steels, including mechanical and 
chemical analyses, and residual stress characterization. In Phase 
II of this project, FE models are expected to be used to both assist 
in interpreting the results obtained in Phase I, and to extend the 
laboratory results obtained in Phase I to service conditions of 
actual rails in the field.  

An FE model simulating the service load environment of a 
rail containing an internal defect is anticipated to contain several 
complicated behaviors and require advanced modeling 
techniques to capture these behaviors. As the model grows in 
complexity, it is essential that confidence be developed in the 
obtained by the model, as test data will not exist for comparison 
with the model. This paper described an approach for developing 
confidence in the model where the complete model of a rail 
under service conditions is broken into several smaller 
“component” models, each of which is intended to evaluate a 
particular modeling technique. By developing confidence in 
individual modeling components, confidence can also be 
developed in the complete model if those same techniques are 
carried forward into that model. The components examined in 
this paper included the length of rail necessary to capture the 
response of a single wheel load, the use of an intermittent or 
continuous foundation beneath the rail, the use of a contour 
integral method to estimate KI, and the use of submodeling to 
improve computational efficiency. Additional V&V activities 
may be appropriate to include in future studies if additional 
details, such as wheel-rail contact stresses, are anticipated for 
inclusion in an analysis performed using the complete model. 
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5.91in / 0.39, or 1,309.97 psi/inch. A side view of a rail with 
regions of discrete support is shown in Figure 12. 

 

Figure 10. Illustration of Supported Distance and Tie-to-tie 
Spacing in Model 

APPENDIX B – CRACK MODELING DETAILS 
Key lessons from this examination related to how the crack 

tip and crack front were defined within the model. These phrases 
are related to how the Abaqus software defines the line 
corresponding to the boundary of the crack, and defines the first 
“ring” of elements surrounding the crack tip used to calculate KI. 
In models Bar-1 through Bar-6, both the crack tip and crack front 
were defined as the same line representing the edge of where the 

crack bordered on the intact material within the bar. These results 
all exhibited an oscillation in the Contour-1 result, which is the 
contour closest to the crack tip. In model Bar-7, the crack tip was 
defined as the same line as in the previous models, but the crack 
front was instead defined as the first “ring” of elements 
surrounding the crack tip. Figure 13 illustrates the difference 
between the two approaches, with the mesh hidden for clarity. 
The effect of this change was to eliminate the oscillation seen in 
Contour 1 from the Bar-1 through Bar-6 results. Thus, future 
models should use the approach from Bar-7 to define the crack 
front as the first ring of elements around the crack, and not the 
line representing the crack itself. 

 
Figure 11. Crack Front and Crack Tip for Bar-7 (left) and Bar-1 

through Bar-6 (right) 

 


